

The Good, The Bad, and The Ugly

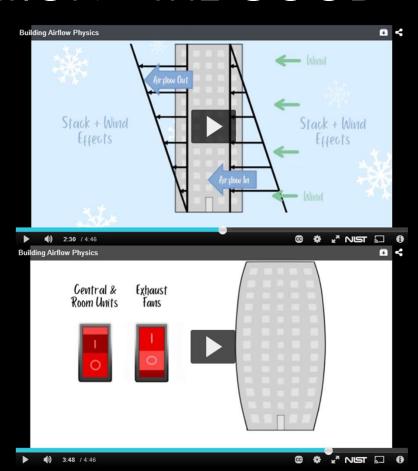
Lisa Ng, PhD, National Institute of Standards and Technology June 8, 2022

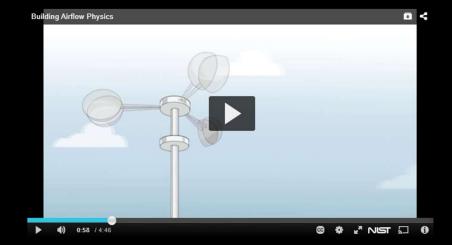
MHO AM IS

- Mechanical Engineer, NIST
 - Indoor air quality
 - Airflow and contaminant simulation
 - Energy modeling
- Member of: IBPSA-USA, ASHRAE
- Mentor

• We are talking about it more

INFILTRATION – THE BAD




 Understand it <u>https://www.nist.gov/video/building-airflow-physics</u>

- 1. Which direction does air flow?
- a) High temperature to low temperature
- b) Low temperature to high temperature
- 2. Can air infiltrate buildings that are pressurized?
- a) Yes
- b) No
- c) It depends!

- 3. In what climate is infiltration an important issue?
- a) Very cold
- b) Very hot
- c) It depends!
- 4. Infiltration is a constant value.
- a) True
- b) False

- Solutions
 - Improve building envelope airtightness
 - Mechanical ventilation for indoor air quality
- Tools to evaluate its impact

- NIST
- Oak Ridge National Laboratory
- Air Barrier Association of America

INFILTRATION – THE BAD

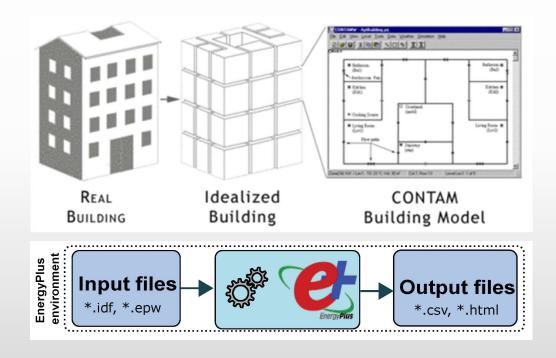
- How leaky is my building?
- Does infiltration even matter?
- How do I model infiltration?

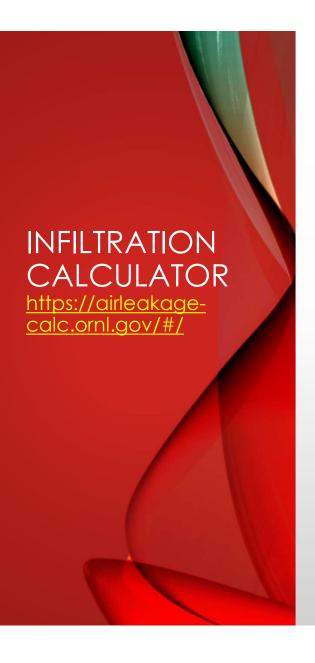
INFILTRATION – THE UGLY

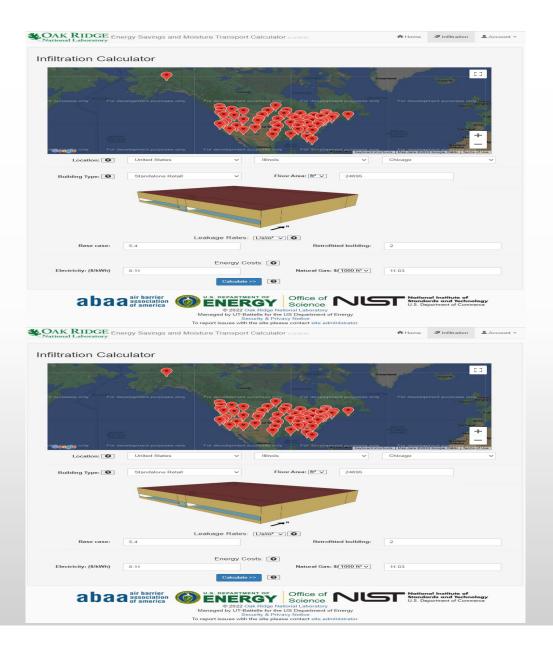
Assuming 0 or constant infiltration

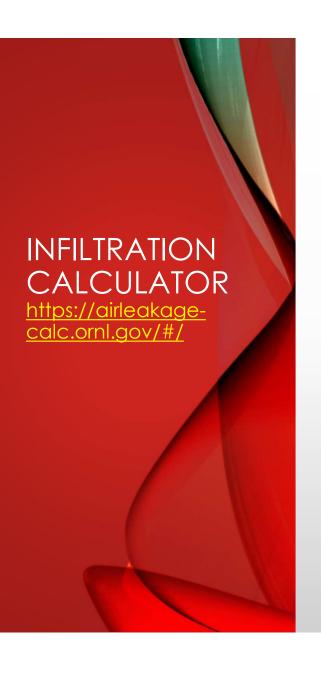
 Not taking into account HVAC system operation or weather in simulations

Not using available tools

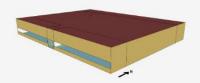








NIST, Oak Ridge National Laboratory and Air Barrier Association of America



↑ Home Infiltration Account -

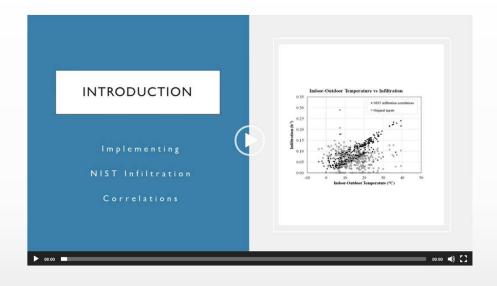
Infiltration Calculator Results

Building Type	Standalone Retail	
Location	Chicago IL USA	
Floor Area	24695 ft²	
Energy Price	Electricity 0.11\$ /kWh, Natural Gas 11.03\$ /1000 fts	

Leakage Rate		Equivalent Leakage Area	
Base Case	Retrofitted Building	Base Case	Retrofitted Building
5.40 L/s/m² at 75 Pa	2.00 L/s/m² at 75 Pa	11.65 ft²	4.31 ft²

Predicted Annual Savings	Electricity	Natural Gas
Energy	9,502 kWh	329,947 ft ^a
Cost	\$ 1,045.26	\$ 3,639.32
Total Cost Savings	\$ 4,684.57	

Moisture Transfer through the Wall Assembly due to Air Leakage				
Description	Base Case	Retrofitted Building		
Total Moisture transfer	58,631 gal/year	17,286 gal/year		
Moisture transfer per envelope area	1.57 gal/ft²/year	0.46 gal/ft²/year		
Moisture transfer per effective leakage area (ELA)	34.96 gal/in²/year	27.83 gal/in²/year		


National Institute of Standards and Technology

© 2022 Oak Ridge National Laboratory Managed by UT-Battelle for the US Department of Energy Security & Privacy Notice

To report issues with the site please contact site administrator

Infiltration = $I_{\text{design}} \cdot F_{\text{schedule}} [A + B|\Delta T] + C \cdot W_s + D \cdot W_s^2]$

Video: https://www.airbarrier.org/nist-infiltration/

Written tutorial: https://www.nist.gov/publications/implementing-nist-infiltration-

correlations

NIST infiltration correlations: https://data.nist.gov/od/id/mds2-2598

THANK YOU!

Lisa Ng

Email: <u>lisa.ng@nist.gov</u>

LinkedIn: https://www.linkedin.com/in/lisachenng/

Join our list serve: infiltration+subscribe@list.nist.gov